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The remotemonitoring of plant canopies is critically needed for understanding of terrestrial ecosystemmechan-
ics and biodiversity as well as capturing the short- to long-term responses of vegetation to disturbance and cli-
mate change. A variety of orbital, sub-orbital, and field instruments have been used to retrieve optical spectral
signals and to study different vegetation properties such as plant biochemistry, nutrient cycling, physiology,
water status, and stress. Radiative transfer models (RTMs) provide a mechanistic link between vegetation prop-
erties and observed spectral features, and RTM spectral inversion is a useful framework for estimating these
properties from spectral data. However, existing approaches to RTM spectral inversion are typically limited by
the inability to characterize uncertainty in parameter estimates. Here, we introduce a Bayesian algorithm for
the spectral inversion of the PROSPECT 5 leaf RTM that is distinct from past approaches in two important
ways: First, the algorithm only uses reflectance and does not require transmittance observations, which have
been plagued by a variety of measurement and equipment challenges. Second, the output is not a point estimate
for eachparameter but rather the joint probability distribution that includes estimates of parameter uncertainties
and covariance structure. We validated our inversion approach using a database of leaf spectra together with
measurements of equivalent water thickness (EWT) and leaf dry mass per unit area (LMA). The parameters es-
timated by our inversion were able to accurately reproduce the observed reflectance (RMSEVIS = 0.0063,
RMSENIR-SWIR = 0.0098) and transmittance (RMSEVIS = 0.0404, RMSENIR-SWIR = 0.0551) for both broadleaved
and conifer species. Inversion estimates of EWT and LMA for broadleaved species agreed well with direct mea-
surements (CVEWT = 18.8%, CVLMA = 24.5%), while estimates for conifer species were less accurate (CVEWT =
53.2%, CVLMA = 63.3%). To examine the influence of spectral resolution on parameter uncertainty, we simulated
leaf reflectance as observed by ten common remote sensing platforms with varying spectral configurations and
performed a Bayesian inversion on the resulting spectra. We found that full-range hyperspectral platforms were
able to retrieve all parameters accurately and precisely, while the parameter estimates ofmultispectral platforms
were much less precise and prone to bias at high and low values. We also observed that variations in the width
and location of spectral bands influenced the shape of the covariance structure of parameter estimates. Our
Bayesian spectral inversion provides a powerful and versatile framework for future RTM development and sin-
gle- and multi-instrumental remote sensing of vegetation.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

The terrestrial biosphere is fundamentally dependent on the interac-
tions between plants and solar radiation through photosynthesis. Con-
sequently, we can learn a lot about the structure and functioning of
ecosystems by studying these interactions in detail, and over the last
several decades our capability do so has expanded dramatically. Specif-
ically, global scale remote sensing observations from satellites such as
.

Landsat, MODIS, and AVHRR have been used to map andmonitor vege-
tation productivity, distribution, and abundance at high temporal fre-
quency (Loveland et al., 2000; Friedl et al., 2002; Hansen, Stehman, &
Potapov, 2010; Houborg, Fisher, & Skidmore, 2015). At the landscape
scale, satellite and sub-orbital (airborne) platforms with high spatial
(e.g. WorldView, b1m) and/or spectral (e.g. AVIRIS Classic, 10 nm) res-
olution sensors have been able to quantify the spatial distribution of
canopy structure, nutrient status, and species composition (Asner,
Martin, Anderson, & Knapp, 2015; Banskota et al., 2015; Singh, Serbin,
McNeil, Kingdon, & Townsend, 2015). In addition, field spectrometers
with the highest available spectral resolution have provided a fast and
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relatively simple method for characterizing and monitoring leaf physi-
ology, biochemistry, and morphology (Serbin, Dillaway, Kruger, &
Townsend, 2012; Couture, Serbin, & Townsend, 2013; Sullivan et al.,
2013; Serbin, Singh, McNeil, Kingdon, & Townsend, 2014; Zhao et al.,
2014).

An important caveat of using spectral information to study vegeta-
tion is that the optical properties beingmeasured are often not of prima-
ry interest. Rather, we are interested in physiologically or ecologically
meaningful variables such as total biomass, photosynthetic efficiency,
species composition, biomass, or biochemistry that drive observed spec-
tral signatures of vegetation (Curran, 1989) and which can be inferred
from the optical properties. This connection is usuallymade empirically,
either by simple regression with spectral vegetation indices (SVIs)
(Fassnacht, Stenzel, & Gitelson, 2015; Haboudane, Miller, Tremblay,
Zarco-Tejada, & Dextraze, 2002; Huete et al., 2002) or throughmore ad-
vanced statistical methods such as partial least squares regression
(PLSR) (Couture et al., 2013; Serbin et al., 2012, 2014; Singh et al.,
2015) and wavelet transforms (Banskota, Wynne, Serbin, Kayastha, &
Townsend, 2013; Blackburn & Ferwerda, 2008; Cheng, Rivard,
Sánchez-Azofeifa, Feng, & Calvo-Polanco, 2010). However, these ap-
proaches can have important limitations depending on the application.
First, the empirical nature of these methods can result in sensor, site,
and/or vegetation specific relationships, as evidenced by the substantial
variability in coefficients and choice of wavelengths across studies
(Croft, Chen, & Zhang, 2014; Huete et al., 2002; Knyazikhin et al.,
1998; Leprieur, Verstraete, & Pinty, 1994; Liu, Pattey, & Jégo, 2012;
Myneni et al., 2002; Wessels, van den Bergh, & Scholes, 2012). Second,
empirical approaches are not a direct mechanistic relationship between
spectra and plant properties and therefore do not provide the true con-
nections between optical properties and variables of interest
(Knyazikhin et al., 2013). As a result, extrapolating empirical ap-
proaches and relationships to larger regions or new locations can be
challenging. Moreover, the indirect, derived data products that arise
from such analyses may have a limited capacity to inform ecosystem
models (Quaife et al., 2008), as they often introduce assumptions that
conflict with the internal logic of the processes represented in these
models.

In contrast, radiative transfer models (RTMs), which provide a more
mechanistic link between plant traits and spectral signatures, can be a
useful alternative to empirical approaches. A variety of standalone
RTMs exist from the leaf (Dawson, Curran, & Plummer, 1998; Feret et
al., 2008; Ganapol, Johnson, Hammer, Hlavka, & Peterson, 1998) to can-
opy scales (Jacquemoud et al., 2009; Kuusk, 2001; Verhoef, 1984;Wang
& Li, 2013). In addition, RTMs are often an important component of dy-
namic vegetationmodels,where they are used to calculate surface ener-
gy balance and light availability for photosynthesis (Medvigy, Wofsy,
Munger, Hollinger, & Moorcroft, 2009; Ni-Meister, Yang, & Kiang,
2010; Kobayashi et al., 2012). In this study, we focus on the leaf-level
PROSPECT model (Jacquemoud & Baret, 1990), which has been exten-
sively used in forward (simulation) mode to develop and test new re-
mote sensing techniques (Croft et al., 2014; Féret et al., 2011; Hunt,
Wang, Qu, & Hao, 2012; Le Maire, François, & Dufrêne, 2004;
Zarco-Tejada et al., 2013) as well as to estimate leaf traits from spectral
observations via inversion (Atzberger & Richter, 2012; Feret et al., 2008;
Jacquemoud, Baret, Andrieu, Danson, & Jaggard, 1995; Jacquemoud et
al., 2009; Li & Wang, 2013; Li & Wang, 2011; Zarco-Tejada et al.,
2004). However, the commonly used approaches for RTM
inversion—such as least-squares minimization and look-up tables—fail
to directly quantify the uncertainties and account for the correlations
among the resulting parameter estimates. The characterization of un-
certainty is a fundamental requirement for drawing meaningful scien-
tific conclusions from results and for assimilating results into
statistical or mechanistic models (Cressie, Calder, Clark, Ver Hoef, &
Wikle, 2009; Quaife et al., 2008).

Applying Bayesian statistics to RTM inversion activities provides a
direct means to quantify the uncertainty and covariance of parameter
estimates while combining multiple sources of information. The use of
independent prior information has been a critical component of RTM in-
version as a way to solve the otherwise underdetermined problem of
estimating a large number of RTM parameters from a small number of
observations (Combal et al., 2003; Lauvernet, Baret, Hascoët, Buis, & Le
Dimet, 2008; Yao, Liu, Liu, & Li, 2008; Pinty et al., 2011; Zhang et al.
2012; Laurent, Schaepman, Verhoef, Weyermann, & Chávez, 2014;
Mousivand, Menenti, Gorte, & Verhoef, 2015). While these studies ei-
ther neglect parameter uncertainty or estimate it using computational-
ly-efficient approximations (e.g. Gaussian posterior distributions),
recent work has demonstrated the efficacy of fully-Bayesian Markov
Chain Monte Carlo (MCMC) approaches for inversion of the PROSAIL
canopy RTM using MODIS (and “MODIS-like”) data (Zhang et al.,
2005, 2006; Zhang et al., 2009, & 2011). However, to the authors'
knowledge, such approaches have yet to be applied to hyperspectral
data, neither at the canopy nor the leaf scales. A recent study by
Lepine, Ollinger, Ouimette, and Martin (2016) further demonstrated
that PLSR estimates of canopy nitrogen are less sensitive to spectral res-
olution than spatial resolution and sensor fidelity, but no comparable
analyses has been attempted for other foliar constituents, nor, for that
matter, using a physically-based RTM rather than an empirical regres-
sion. In this study, we examine the effects of measurement spectral
characteristics on accuracy, uncertainty, and covariance of leaf traits es-
timated from spectral inversion of a leaf RTM. First, we demonstrate the
applicability of a fully Bayesian approach to leaf RTM inversion and val-
idate this approach using data from the NASA Forest Functional Types
(FFT) database of field spectra (Serbin et al., 2014; Singh et al., 2015).
Second, we simulate reflectance observations using the spectral re-
sponse functions of ten common remote sensing platforms and test
the accuracy and precision with which our inversion algorithm can re-
trieve parameters from these observations. Although such an experi-
ment is highly idealized, it does provide insight on the absolute
theoretical limits of RTM inversion by different remote sensing plat-
forms and illustrates how subtle changes in spectralmeasurement char-
acteristics can affect inversion results. More broadly, this work
reiterates the power of a Bayesian framework for fully utilizing the
vast archive of remote sensing and field spectral observations to en-
hance our understanding of ecosystem processes.

2. Methods

2.1. Inversion procedure

The PROSPECT 5 model simulates the full spectral reflectance and
transmittance of a leaf over the 400–2500 nm range using five key pa-
rameters related to leaf structure and biochemistry (Feret et al., 2008).
In the PROSPECT model, a leaf is treated as a set of N partially transpar-
ent flat plates, each with wavelength-dependent transmissivity kλ.
Transmissivity kλ is based on the linear combination of empirically cal-
ibrated specific absorption spectra for total chlorophyll (a and b), total
carotenoids, water, and drymatter (e.g. cellulose, lignin, protein)multi-
plied by their respective quantities (given by the parameter values: Cab,
Car, Cw, Cm) (Table 1; Fig. S1). For further detail on the PROSPECT
model, see Feret et al. (2008).

The objective of RTM spectral inversion is to estimate the physical
RTMparameters from the observed spectral information. This is accom-
plished through a statistical inversion, wherein we seek the set of pa-
rameters that minimizes the residual error between PROSPECT-
modeled and measured reflectance. Our approach to the inversion of
PROSPECT is distinct from previous studies (Combal et al., 2003; Feret
et al., 2008; Féret et al., 2011; Li &Wang, 2011, 2013) in two important
ways. First, whereas many past studies use both reflectance and trans-
mittance to estimate parameters, we use only reflectance. Reflectance
is generally easier to measure than transmittance, which requires spe-
cial instrumentation such as integrating spheres that often have inade-
quate designs and yield poor signal-to-noise ratios, especially in the



Table 1
Summaryof PROSPECT 5 parameters. Ranges for Car, Cw, and Cmare based on thedatasets used for their calibration (ANGERS for Cab and Car, LOPEX for Cwand Cm) as reported in Feret et
al. (2008). The ranges for N and Cab are calculated from the LOPEX and ANGERS databases, respectively (available online at http://opticleaf.ipgp.fr or on request). Units for Cw and Cmare
adjusted for readability (original units are g cm−2).

Parameter Description Unit Range

N Structural parameter; effective number of mesophyll layers Unitless 1.09 to 3.00
Cab Total chlorophyll (a and b) density μg cm−2 0.78 to 106.72
Car Total carotenoid density μg cm−2 0 to 25.3
Cw Equivalent water thickness g m−2 43 to 439
Cm Leaf dry matter content per unit area g m−2 17 to 152

228 A.N. Shiklomanov et al. / Remote Sensing of Environment 183 (2016) 226–238
longer wavelengths (i.e. N2 μm). As well, inversion on reflectance data
alone allows transmittancemeasurements as optional data for indepen-
dent validation. Second, unlike past leaf-level PROSPECT inversion stud-
ies that only provide point estimates of parameters, we performed our
analysiswithin a Bayesian framework that provides the joint probability
distribution of the PROSPECT 5 parameters, θ = {N, Cab, Car, Cw, Cm},
and the residual standard deviation, σ, as the output. The generalmath-
ematical statement of this posterior distribution is given as follows:

P θ;σj Xð Þ ËcP X j θ;σð Þ P θð Þ P σð Þ
P X j θ;σð Þ ËcNormal PROSPECT5 θð Þ j X;σð Þ;

where PROSPECT5(θ) is themodeled reflectance given θ, and X is a vec-
tor of observed reflectance values. The residual error is assumed to be
normally distributed with a mean of 0 and standard deviation of σ.

We set the prior distribution for N to a lognormal distribution shifted
to have a minimum of 1, and parameterized based on a review of liter-
ature using the PROSPECT model (Le Maire et al., 2004; Ferreira,
Grondona, Rolim, & Shimabukuro, 2013; Croft et al., 2014) (Fig. S2).
We assigned the remaining parameters log-normal priors based on
summary statistics and histograms from the LOPEX, ANGERS, HAWAII,
and CALMIT spectral databases as reported by Feret et al. (2008) (Fig.
S2). The residual variance σ2 was assigned an uninformative inverse
gamma prior, which is conjugate with the normal distribution and
therefore allows for computationally efficient Gibbs sampling.

We sampled the joint posterior distribution of the PROSPECT 5 pa-
rameters using the Metropolis-Hastings (MH) algorithm with adaptive
block sampling (Haario, Saksman, & Tamminen, 2001). For this, we ini-
tialized each inversion using parameter values drawn at random from
the prior distributions. For each inversion, we ran the algorithm five
times (i.e. five independent chains) for 100,000 iterations each. At
each iteration, the algorithm proposes a parameter vector, calculates
the vector's likelihood based on the observations and the prior, and ac-
cepts or rejects the vector based on this likelihood. The proposal step
performs a random draw from a multivariate normal distribution cen-
tered on the last accepted parameter vector. The covariance matrix for
the multivariate normal proposal distribution was re-computed every
100 iterations as follows: (1) the univariate standard deviation of each
parameter and the Pearson product-moment correlation matrix were
computed; (2) the standard deviation vector was multiplied by the
ratio of the acceptance rate in the last 100 samples to the target accep-
tance rate (set to 0.234, as per Haario et al., 2001); (3) the resulting
standard deviation vector was converted to a diagonal matrix and mul-
tiplied to both sides of the correlation matrix to give a re-scaled covari-
ance matrix. For each inversion, we determined MCMC convergence
based on a value of the Gelman-Rubinmultivariate potential scale reduc-
tion factor of less than 1.1 (Gelman & Rubin, 1992, as implemented in the
R coda package v.0.18–1 by Plummer et al., 2016). For runs that did not
converge, we repeated this process with a 20% smaller target acceptance
rate for the adaptation step, which increases the size of the sampling
space for each chain and therefore reduces the likelihood of getting
trapped in local minima. Across the N10,000 inversions performed in
this study, only five failed to converge (after five inversion attempts)—all
for simulated CHRIS-Proba spectra (see Section 2.3)—and we excluded
these data points from our analysis. We visually examined a random
subset of the resulting trace plots and autocorrelograms and determined
that a common burn-in period of 80,000 samples and a thinning interval
of 20was sufficient for an accurate and representative sample of the joint
posterior distribution. After applying the burn-in and thinning filter, we
calculated the mean, standard deviation, and 95% confidence intervals
of the sampled parameter values (Fig. S3).

With chains running in parallel, the inversion of one leaf spectrum
with our specifications takes approximately 4 min (on one Intel®
Xeon™ X5570 CPU @ 2.93GHz), and running the entire set of over
10,000 inversions required for this paper took several days (running
up to 16 inversions simultaneously on a high performance computing
cluster). That being said, we anticipate that recoding of the algorithm
from R to a compiled language will dramatically increase (N50×) the
computational efficiency of our approach.

The inversion algorithm described above is available as an open-
source, publicly-available R (R Development Core Team, 2008) package
housed within the PEcAn ecoinformatics toolbox (github.com/
pecanproject/pecan/tree/master/modules/rtm) (Dietze, Lebauer, &
Kooper, 2013; LeBauer, Wang, Richter, Davidson, & Dietze, 2013). This
package allows users to simulate spectra using the PROSPECT family of ra-
diative transfer models and apply our inversion algorithm to their own
models and data. For more information, refer to the package vignette on
the PEcAn tutorials page (pecanproject.github.io/tutorials.html).

2.2. Validation

2.2.1. Data
We tested the ability of our inversion to accurately estimate leaf

traits using data collected as part of the NASA Forest Functional Types
(FFT) campaign (Deel et al., 2012; Serbin et al., 2014; Singh et al.,
2015). This dataset consists of leaves collected from various positions
within the canopy for 52 species from 13 sites across the Northeast
and Midwest USA. An Analytical Spectral Devices (ASD) FieldSpec 3
Full Range (350 to 2500 nm) spectroradiometer was used together
with a leaf clip and internal calibrated light source to measure reflec-
tance on the adaxial surface of 1348 unique leaves. For a subset of 765
of these leaves, the same instrument was used with an ASD integrating
sphere setup tomeasure transmittance through the leaf adaxial surface.
Our database included both broadleaf and conifer species. For conifer
measurements, we constructed edge-to-edge mats of needles larger
than the spot size of the light source (Serbin, 2012; Singh et al., 2015).
As detailed in Serbin (2012), we found minimal changes in reflec-
tance/transmittance measurement up to a threshold of differing gaps
between needles. These observations are henceforth referred to as
“FFT measured reflectance and transmittance,” respectively. In addition
to spectral measurements, laboratory measurements of leaf dry mass
per unit area (LMA) and equivalent water thickness (EWT) were avail-
able for 950 leaves. For further information on the sampling methodol-
ogy, see Serbin et al. (2014).

During exploratory analysis, we observed that inversion results by
leaf habit displayed some distinct differences and conifer species were
consistently less accurate than results for broadleaved species,
reflecting ecological differences in leaf structure that are not well repre-
sented by the PROSPECT model. Therefore, to better contextualize our
results, we performed both validation steps for the entire data set and

http://github.com/pecanproject/pecan/tree/master/modules/rtm
http://github.com/pecanproject/pecan/tree/master/modules/rtm
http://www.pecanproject.github.io/tutorials.html
http://opticleaf.ipgp.fr


229A.N. Shiklomanov et al. / Remote Sensing of Environment 183 (2016) 226–238
separately for broadleaved and conifer species. However, even within
the conifer functional type,we found certain species and foliarmorphol-
ogies showedmuch larger errors than others. These differences could be
ecological in nature or an artifact related to the challenges of measuring
full-range reflectance and transmittance of different types of conifer
needles. To investigate whether these errors aligned with established
ecological classifications, we grouped species based on their approxi-
mate succession (“early”, “mid”, or “late”), following the general classi-
fication scheme of Dietze and Moorcroft (2011), except that we
grouped the “Northern” and “Southern Pine” functional types as “early
conifer.” Classification based on succession is useful for this study be-
cause it is indicative of plant shade tolerance (Dietze & Moorcroft,
2011), which is closely linked to leaf structure and biochemistry
(Poorter, Niinemets, Poorter, Wright, & Villar, 2009).

We applied our inversion algorithm individually to each of the FFT
measured reflectance spectra (n = 1348), resulting in an estimate of
the joint probability distribution of the PROSPECT 5 parameters for
each leaf. We then generated a dataset of synthetic reflectance spectra
(“FFT simulated reflectance”) by using themiddle 90% of these parame-
ter estimates (n=1040) as inputs to the PROSPECT 5model. These syn-
thetic reflectance spectra were used as data in the sensor simulation
experiment (Section 2.3). We used real parameter estimates rather
than random draws from a distribution to preserve their ecological
ranges and covariances resulting from within- and between-species
tradeoffs in traits such as those described for the leaf economics spec-
trum (Wright et al., 2004).

We then performed two different tests to evaluate the accuracy of
these parameter estimates: (1) We compared the FFT simulated reflec-
tance and transmittance to measured reflectance and transmittance,
and (2) we directly compared the inversion estimates of PROSPECT 5
parameters Cw and Cm to measured values of EWT and LMA,
respectively.

2.2.2. Reflectance and transmittance
A common way to validate model inversion is to run the model in

forward mode using the estimated parameters as inputs and compare
the output to the original data. For our study, we used the inversion es-
timates of the PROSPECT parameters as inputs to the PROSPECT model
to predict reflectance and transmittance spectra, which we then com-
pared to the observed reflectance and transmittance. Errors in spectral
inversion can originate from multiple sources, including measurement
error (both trait and spectra), failure of the PROSPECT model to fully
capture leaf spectral features (i.e. model formulation error), and param-
eter identifiability issues in the inversion algorithm. To isolate algorith-
mic error, we first performed the validation on a set of synthetic
reflectance and transmittance spectra (n=1348). To investigate the re-
maining sources of error, we performed the same validation on FFT
measured reflectance (n=1348) and transmittance (n=765) spectra.
For both reflectance and transmittance, we calculated themean and 90%
and 95% confidence intervals on the absolute error (simulated - mea-
sured) at each wavelength. The overlap of the 95% confidence interval
with 0was used to judge statistical significance. To facilitate comparison
with other RTM inversion studies (Feret et al., 2008; Di Vittorio, 2009a),
we also computed the root mean square error (RMSE), bias (BIAS), and
bias-corrected RMSE (SEPC) averaged across the visible (VIS, 400–
800 nm) and near-infrared (NIR, 801–2500 nm) regions of the spec-
trum:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i
xi−xoð Þ2
n

s

BIAS ¼
Xn

i
xi−xoð Þ
n

SEPC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i
xi−xo−BIASð Þ2

n

s
;

where xi is the simulated value (reflectance or transmittance), xo is the
observed value, and n is the number of spectra considered.

2.2.3. EWT and LMA
For leaves that had paired measurements of reflectance and EWT

and LMA (n = 950), we compared the mean inversion estimates for
PROSPECT parameters Cw and Cm to measured values of EWT and
LMA, respectively. For each, we compared the mean inversion estimate
to the measured value via the RMSE, BIAS, and SEPC as above (with in-
version estimate x and measurement xo) as well as relative RMSE
(RMS%E) and the relative bias-corrected RMSE (CV):

RMS%E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i

xi−xo
xo

� �2

n

vuuut
� 100%

CV ¼ SEPC
xobs

� 100%

2.3. Sensor simulation experiment

Recent work has shown that PLSR estimates of foliar nitrogen con-
tent are less sensitive to spectral resolution than to other factors such
as spatial resolution and sensor fidelity (Lepine et al., 2016). However,
the PLSR approach implemented in that study was unable to quantify
the uncertainty around the nitrogen estimates. We hypothesize that
the spectral characteristics of most common remote sensing platforms
are sufficient to accurately estimate the leaf biophysical parameters
modeled by PROSPECT, but that the uncertainties in these parameters
will increase with declining spectral resolution. To test this hypothesis,
we transformed the FFT simulated reflectance spectra using the relative
spectral response functions of 11 common remote sensing platforms
(Table 2, Fig. S4), and used our Bayesian inversion of PROSPECT 5 to re-
trieve the starting parameters from the transformed spectra. For input
parameters, we used the inversion results from measured spectra,
thereby capturing a large range of ecologically realistic values and pre-
serving inherent covariances between parameters. To account for ob-
servation error, we simulated Gaussian random noise (with mean 0
and standard deviation 2.5 × 10−4) smoothed with a Gaussian filter
(kernel width 11) to account for inherent autocorrelation in
hyperspectral measurements (Fig. S5).

We then examined how two characteristics of the inversions varied
between sensors: Relative bias (ɑ) indicates how closely the mean pa-
rameter estimate (μ)matched the true value (p) and is a usefulmeasure
for describing the accuracy of the estimate's central tendency.

α ¼ μ−p
p

Uncertainty (π) describes the width of the 95% confidence inter-
val of the estimate (s) relative to the mean value, and is useful for as-
certaining the precision with which the inversion is able to estimate
a parameter.

π ¼ s
μ

Wenote that both statistics are normalized to facilitate inter-param-
eter comparison. Both metrics were computed for each parameter for
each inversion and then averaged over all simulated spectra.

We recognize that this experiment does not fully capture all of the
variability associated with inversion of real observations from these
sensor systems given its failure to account for canopy structure,



Table 2
Spectral, spatial, and temporal characteristics of several important previous and current remote sensing platforms and instruments considered in the sensor simulation experiment.

Sensor Number of Bands Spectral range (nm) Bandwidth (nm) Spatial resolution (m) Revisit time (days)

AVIRIS NG 416 380 to 2510 5 0.3 to 4.0a On-demand
AVIRIS Classic 216 400 to 2500 10 b10 to 20a On-demand
CHRIS-Proba 62 410 to 1050 1.5 to 12 36 7 to 8
Hyperion 225 350 to 2500 10 30 16
Landsat 5 (TM) 6 450 to 2350 60 to 270 30 16
Landsat 7 (ETM+) 6 440 to 2350 60 to 280 30 16
Landsat 8 (OLI) 8 435 to 2295 20 to 185 30 16
MODIS 7 459 to 2155 20 to 50 250 to 500 1 to 2
VIIRS 10 402 to 2275 15 to 60 750 1 to 2
AVHRR 3 580 to 1640 100 to 275 1090 1

a Spatial resolution is dependent on aircraft altitude and instrument IFOV.
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atmospheric effects, sun-sensor geometry, and sensor radiometric reso-
lution. However, this experiment is capable of illustrating the ability to
characterize uncertainty in inversion results and improves the confi-
dence with which we can extract information from lower quality data
sources. Moreover, this experiment sets a theoretical limit on the accu-
racy and precision of leaf trait retrieval from spectral RTM inversion,
thereby contextualizing past RTM inversion results (e.g. Zhang et al.,
2005, 2006; 2009, & Zhang et al., 2012a,b) and guiding future research
in the field.

The entire workflow for this paper is summarized in Fig. 1. The data
and R source code for performing all analyses in this study have been
made publicly available at github.com/ashiklom/sensor-manuscript.
We encourage those interested to replicate our analyses and build on
them with their own data and models.
Fig. 1. Workflow illustrating the steps in this study
3. Results

3.1. Validation

3.1.1. Reflectance and transmittance
For the inversion of synthetic spectra, we found no statistically sig-

nificant (p b 0.05) spectral bias at any wavelength (Fig. S6). As well,
the observed differences between input and simulated output were
one to two orders of magnitude smaller than corresponding errors in
the inversion of measured spectra (Fig. 2, Fig. S6). These results collec-
tively illustrate that our algorithm is unbiased and contributesminimal-
ly to errors in the inversion of measured spectra.

For the inversion of measured spectra, we observed substantial var-
iability in the spectral bias across all analyzed leaves, resulting in
as well as the figs. to which they correspond.
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Fig. 2.Bias in FFT simulated reflectance (top) and transmittance (bottom) spectra compared tomeasurements over all leaves (left) and only hardwood (middle) and conifer (right) species.
For a givenwavelength, the solid black line is themean bias, the dark grey bounded by the dotted line is the 90% confidence interval, the light grey region bounded by the dashed line is the
95% confidence interval, the red line highlights a bias of 0, and the red shaded regions highlight bias significant at the 95% confidence level.

Table 3
Reflectance (Refl.) and transmittance (Tran.) spectral validation error statistics aggregated across the visible (400–800 nm) and infrared (801–2500nm) regions. Values fromother studies
are included for comparison.

Visible Infrared

RMSE BIAS SEPC RMSE BIAS SEPC

Refl. FFT all 0.0083 0.0018 0.0071 0.0098 −0.0020 0.0061
Broadleaf 0.0063 0.0023 0.0042 0.0064 −0.0009 0.0034
Conifer 0.0101 0.0011 0.0090 0.0127 −0.0035 0.0064

Feret et al. (2008): CALMIT 0.032 0.010 0.028 – – –
ANGERS 0.019 0.001 0.019 0.016 0.003 0.014
HAWAII 0.021 −0.008 0.020 0.036 −0.031 0.017

Di Vittorio (Di Vittorio, 2009a,b) 0.0255 0.00477 – – – –
Tran. FFT all 0.0404 −0.0133 0.0336 0.0551 0.0040 0.0537

Broadleaf 0.0248 0.0012 0.0167 0.0450 0.0266 0.0336
Conifer 0.0553 −0.0346 0.0389 0.0661 −0.0293 0.0566

Feret et al. (2008): CALMIT 0.029 −0.005 0.025 – – –
ANGERS 0.018 −0.005 0.017 0.016 0.001 0.015
HAWAII 0.022 0.003 0.020 0.020 −0.003 0.017

Di Vittorio (2009a,b) 0.0442 0.0294 – – – –
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statistically significant (p b 0.05) bias in only a few specific wavelength
regions (Fig. 2). For both broadleaf and needle-leaf conifer species, re-
flectance was typically overestimated between 1600 and 1900 nm and
underestimated between 1000 and 1300 nm and between 2000 and
2500 nm. The errors in the 1600 to 1900 nm and 2000 to 2500 nm
ranges coveredmorewavelengths and had larger magnitude for conifer
species than broadleaved species. Broadleaved species also had a statis-
tically significant reflectance overestimate in the 400 to 500 nm range
and an underestimate at 1300 nm, while conifer species had a signifi-
cant reflectance overestimate at 1300 nm.

For both measured and synthetic spectra, transmittance bias
(BIAS = −0.0133) was, on average, greater in magnitude than reflec-
tance bias (BIAS = 0.0018), with a mean positive bias for broadleaved
species (BIAS = 0.0012) and a mean negative bias for conifer species
(BIAS=−0.0346) (Fig. 2, Table 3). However, the between-leaf variabil-
ity in bias was also large and resulted in statistically significant bias in
only a small number of specific spectral regions. For both broadleaved
and conifer species, we observed a significant underestimate in trans-
mittance in the chlorophyll a absorption 400 and 500 nm. Specifically
for conifer species, we also observed underestimates in transmittance
at the vegetation “red edge” around 700 nm and at a water absorption
feature around 1900 nm.

3.1.2. EWT and LMA
Similar to the results of the spectral validation (Section 3.1.1), the in-

version estimates of Cw and Cm (compared to measured values of EWT
and LMA, respectively) displayed higher accuracy for broadleaf
(CVCw = 18.8%, CVCm = 24.5%) versus conifer species (CVCw = 52.3%,
CVCm = 63.3%) (Table 4). For the broadleaved species, our parameter
estimates were within the range observed previously (Table 4). While
the inversion estimates for conifer species show a lower performance
compared to broadleaf trees, the error inversion results were primarily
driven by a single plant functional type—early successional conifers,
which consisted entirely of pine species (Pinus family). Notably, a few
estimates for mid-successional conifer species displayed significant di-
vergence with observations, but in general fell along the 1:1 relation-
ship (Figs. 3 and 4).

3.2. Sensor simulation experiment

3.2.1. Parameter error
Across all of the selected sensors, the highest PROSPECT 5 parameter

inversion uncertainty and bias were observed for Car (Fig. 5, Table 5).
This can readily be explained by the Car specific absorption feature,
which is both extremely narrow and overlaps substantially with that
of Cab (Fig. S1). On the other extreme, the most accurate and least un-
certain retrieved parameter was N, which is related to the reflectivity
Table 4
Error statistics for the comparison of inversion estimates of PROSPECT parameters Cw and
Cm and measured values of equivalent water thickness (EWT) and leaf dry mass per unit
area (LMA), respectively. Values fromother inversion studies are included for comparison.

RMSE BIAS SEPC CV RMS%E

Cw/EWT
(g m−2)

FFT Broadleaf 17 5 16 18.8 21.64
Conifer 187 90 164 52.3 67.29

Feret et al. (2008): LOPEX 17 −3 17 15.2 –
ANGERS 20 −1 20 17.1 –
HAWAII 57 −15 55 19.8 –

Féret et al. (2011): #3 27 – – – –
Li and Wang (2011) 12 5 – 20.10 –

Cm / LMA
(g m−2)

FFT Broadleaf 20 −18 9 24.5 43.75
Conifer 121 35 116 61.6 65.51

Feret et al. (2008): LOPEX 34 21 27 51.0 –
ANGERS 26 1 26 49.8 –
HAWAII 49 −35 35 27.8 –

Féret et al. (2011): #3 31 – – – –
Li and Wang (2011) 8 −7 – 13.75 –
of the leaf across the entire spectrum (Fig. 5, Table 5, Fig. S1). Despite
relatively narrow absorption features, most simulated sensors were
able to retrieve Cabwith reasonably good accuracy, which is not surpris-
ing given the long history of monitoring vegetation pigmentation using
various platforms. Similarly, all sensors except CHRIS-Proba and AVHRR
retrieved Cw with low uncertainty and bias, reflecting the wide and
strong absorption features of water in the NIR and SWIR (Fig. 5, Table
5, Fig. S1). The failure of CHRIS-Proba to retrieve Cw can be attributed
to its inability to measure in this spectral range (Fig. S4). The retrieval
accuracy for Cm was much more sensor dependent, with good perfor-
mance among the simulated hyperspectral sensors, VIIRS, and Landsat
8, followed by lower performance for simulated Landsat 5 and 7 and
MODIS, and a poor result for the simulated Chris-PROBA and AVHRR
data (Fig. 5, Table 5). Although the specific absorption feature for Cm
is very wide, the sensitivity of reflectance to Cm values is much lower
than for other parameters and almost the entire feature can be masked
or confounded by Cw (Fig. S1). This suggests that Cm is very dependent
on precise locations of certain bands and therefore explains the differ-
ences in the estimate accuracy of apparently similar sensors like Landsat
5, 7, and 8 (Table 2, Fig. S4). More generally, the importance of precise
band widths and locations is evidenced by the noticeably better perfor-
mance of Landsat 8 compared to Landsat 5 and 7 for certain parameters
(Fig. 5, Table 5) despite the subtle differences in the sensors' respective
bandwidths (Table 2, Fig. S4).

3.2.2. Parameter uncertainty and covariance
Fig. 6 shows an example of processed inversion output based on the

high spectral resolution field spectrometer data and the spectral re-
sponse functions of AVIRIS NG, Landsat 8, and MODIS. All four plots
are simulated from a single set of parameters, so differences in results
are caused only by variations in spectral measurement characteristics
(Fig. S4). Out of these four sensors, the uncertainties increase with ap-
proximately decreasing spectral resolution, with lowest uncertainties
in the full spectra, second-lowest for AVIRIS NG, second highest for
Landsat 8, and highest for MODIS. The shapes of parameter covariances
are distinctly different between these sensors, reflecting differences in
the ability of the inversion to distinguish between parameters based
on the available information. Across all four sensors, we observe strong
positive covariance between N and Cm, since these parameters influ-
ence wide regions of the reflectance spectrum in opposite ways (Fig.
S1). Similarly, we also observe a positive covariance between N and
Cab, although the strength of this covariance is not equal across sensors.
The remaining covariances are mostly specific to MODIS, whose band
configuration increases the overlap between the associated parameters
(Fig. S4).

We find that inversion estimates for the field spectra are occasional-
ly falsely overconfident. For instance, the true value of N and Cw is out-
side the 95% confidence limit of their estimated joint probability
distribution at full, field spectrometer resolution. That being said, this
is less of an issue for the other sensors, where the joint probability dis-
tribution encompasses the true value. This suggests that spectral resolu-
tion below 5 nm may not provide additional information content,
particularly for the broad absorption features within leaves, because of
the strong autocorrelation between adjacentwavelengths.More impor-
tantly, although the joint posterior probability distributions from
Landsat 8 and MODIS appear wide, the resulting parameter values are
constrained by an order of magnitude or more compared to the priors.

4. Discussion

In this manuscript, we reiterate the power of the Bayesian RTM in-
version framework for using spectral data to characterize vegetation
and monitor ecosystem dynamics. The use of a physically-based
model to describe the interaction of light with different vegetation
structural and biochemical components improves the extent to which
such an approach can be generalized across vegetation types and sub-



Fig. 3. Modeled and observed equivalent water thickness (g m−2) for both conifers and hardwoods (a), just hardwoods (b), and just conifers (c). Point colors indicate plant type (a) or
successional stage (b,c). The dashed line represents a 1:1 fit.

233A.N. Shiklomanov et al. / Remote Sensing of Environment 183 (2016) 226–238
orbital and spaceborne platforms compared to more empirical ap-
proaches. Moreover, this physically-based approach enables estimation
of vegetation properties from sensors of varying spectral resolution, and
our ability to quantify uncertainty in our estimates provides the versatil-
ity to assess the performance of various sensors for a range of
applications.

Our inversion results are comparable to other studies (Feret et al.,
2008; Féret et al., 2011; Li &Wang, 2011; Di Vittorio, 2009a). The results
outperformed those of Féret et al. (2011) despite the fact that we per-
formed the inversion on measured spectra and inverted all five PROS-
PECT parameters, whereas Féret et al. (2011) performed inversions on
synthetic spectra and did not attempt to estimate the structure param-
eter N. As such, we suggest that our approach does not come at the cost
Fig. 4.Modeled and observed leaf dry mass per unit area (g m−2) for both conifers and hardw
successional stage (b,c). The dashed line represents a 1:1 fit.
of model performance, and, importantly, enables the use of a much
wider range of spectral data to explore vegetation dynamics. Our meth-
od contrasts with some previous methods (e.g. Feret et al., 2008; Féret
et al., 2011) that utilize both reflectance and transmittance observations
to invert leaf models such as PROSPECT. These require the use of addi-
tional, expensive instruments, such as an integrating sphere, that typi-
cally introduce significant noise and potential errors in the
measurements given their inadequate design across a range of leaf
habits. In addition, our approach suggests the possibility to instead use
leaf reflectance observations alone to scale canopy-scale RTMs by cou-
pling measured reflectance with simulated transmittance.

Placed in the context of past inversion studies, our work reveals
some continuing challenges in the use of PROSPECT tomodel leaf optical
oods (a), just hardwoods (b), and just conifers (c). Point colors indicate plant type (a) or



Fig. 5. Mean uncertainty (a) and relative bias (b) (as defined in Section 2.3) of inversion estimates for each parameter and simulated sensor. Sensors are arranged along the x-axis in
approximate order of increasing spectral resolution.

Table 5
Uncertainty and relative bias in parameter estimates from inversion of simulated spectra filtered through relative spectral response curves of different sensors.

Sensor

Uncertainty (π) Relative bias (α)

N Cab Car Cw Cm N Cab Car Cw Cm

ASD Field Spec 0.20 0.54 2.91 0.26 1.33 −0.001 0.05 0.08 0.01 −0.05
AVIRIS NG 0.87 2.36 12.78 1.12 5.81 −0.004 0.05 −0.03 0.004 −0.03
AVIRIS Classic 1.62 4.61 26.06 2.13 11.02 −0.04 0.06 −0.44 −0.01 −0.08
Hyperion 1.69 4.81 27.35 2.23 11.44 −0.04 0.05 −0.49 −0.02 −0.06
CHRIS-Proba 21.93 20.77 53.86 106.5 173.8 −0.71 −0.50 −2.52 2.41 87.84
Landsat 5 8.90 17.14 114.8 13.32 66.43 −1.53 −0.64 −5.16 −0.76 −0.89
Landsat 7 8.84 21.90 134.2 12.94 66.07 −1.52 0.55 −9.17 −0.77 −0.91
Landsat 8 4.31 12.23 118.5 11.05 27.99 −0.33 0.28 −3.02 −0.32 −0.005
MODIS 10.29 15.99 220.5 16.65 86.00 −1.20 0.07 −29.14 −1.88 5.43
VIIRS 2.49 13.24 174.4 4.75 18.23 −0.09 1.57 −18.06 −0.09 0.004
AVHRR 25.47 114.2 263.3 74.58 179.1 −0.26 −7.47 −39.04 −8.04 77.21
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Fig. 6. Example joint probability distribution for parameter inversion estimates of simulated spectra using the full spectra (red; top panels) and the relative spectral response (RSR)
functions of AVIRIS NG (cyan), Landsat 8 (dark blue), and MODIS (orange). Dotted lines indicate true parameter values. Note that the axis range of the top panels is substantially
smaller than that of the bottom panels. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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properties and provides some guidance for future RTM development.
For instance,we noted issueswith using PROSPECT tomodel reflectance
and transmittance in the 400 to 500 nm range (Fig. 2) that have also
been reported in previous studies. Feret et al. (2008) observed a consis-
tently negative transmittance bias and occasionally a positive or nega-
tive reflectance bias. Similarly, Croft, Chen, Zhang, and Simic (2013)
report systematic underestimates of reflectance in this part of the spec-
trum.Onepossible source of bias is PROSPECT's simplified description of
leaf structure (Jacquemoud & Baret, 1990) and failure to account for
specular reflectance off the leaf surface (Grant, 1987). Another possible
source of error is imprecise calibration of the leaf refractive index,which
has a relatively strong wavelength dependence in the region of interest
(400–500 nm) (Feret et al., 2008). Alternatively, this bias could be the
result of the failure of the PROSPECT 5 model to properly represent
the spectral properties of chlorophyll in leaves, potentially requiring ad-
ditional calibration across a broader range of species and environments.
The common specific absorption feature for chlorophyll a and b
(kCab(λ)) in PROSPECT 5 used in this study is empirically calibrated to
a single data set (ANGERS; Feret et al., 2008), and many studies have
shown that this feature may need to be re-calibrated to the data at
hand to obtain accurate inversion estimates, particularly for species dis-
similar to those in the ANGERS data set (Malenovský et al., 2006;
Moorthy, Miller, & Noland, 2008; Zhang, Chen, Miller, & Noland, 2008;
Li &Wang, 2013). Aswell, PROSPECT 5 fails to distinguish between chlo-
rophyll a and b, which have overlapping but distinctly different absorp-
tion signatures and whose ratios have been shown to be affected by
environmental conditions (Blackburn, 2007; Di Vittorio, 2009b; Di
Vittorio & Biging, 2009). Fortunately, it has been shown that not only
can chlorophyll a and b be distinguished using imaging spectroscopy
(Di Vittorio, 2009b), but that these differences can be incorporated
into a RTM to improve its performance (Di Vittorio, 2009a).

Reflectance in the SWIR region (N1500 nm)—where we observed
significant reflectance bias (Fig. 2)—is influenced by three PROSPECT
parameters: N, Cw, and Cm (Fig. S1). All three parameters modulate re-
flectance in this spectral region monotonically: Reflectance increases
with higher values of N and decreases with higher values of Cw and
Cm (Fig. S1). This means that it is unlikely that incorrect parameter
trade-off within the algorithm (e.g. preferentially selecting Cw over
Cm) could contribute to this error. Feret et al. (2008) also reported sim-
ilar reflectance bias patterns for the ANGERS data set despite using a dif-
ferent inversion methodology. We hypothesize this bias is the result of
PROSPECT's insufficient characterization of the specific absorption spec-
trum of leaf dry matter (kCm(λ)), since the absorption characteristics of
water (kCw(λ)) are very well known and N is not dependent on an ab-
sorption feature. This would also help explain the negative bias we ob-
served between spectral inversion estimates of Cm and direct
measurements of LMA (Fig. 3, Table 3). Other studies have also reported
a bias but the direction of this bias has not been consistent, with some
studies showing negative bias across all their data (Li & Wang, 2011;
Cheng et al., 2014) and others reporting a bias whosemagnitude and di-
rection is data-dependent (Feret et al., 2008). This may partially be ex-
plained by the simple treatment of non-pigment compounds in the
current PROSPECT model, wherein protein, cellulose, hemicellulose,
sugar, starch, and lignin are aggregated into a single parameter (Cm)
(Fourty, Baret, Jacquemoud, Schmuck, & Verdebout, 1996). As with
chlorophyll, the absorption feature for Cm is empirically derived
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(Feret et al., 2008) and fails to represent variability in the relative abun-
dance of the different components (Poorter et al., 2009). Fortunately,
Wang, Skidmore,Wang, Darvishzadeh, and Hearne (2015) demonstrat-
ed that, with proper calibration, it is possible to use PROSPECT inversion
to determine leaf protein as well as combined cellulose and lignin con-
tent. Furthermore, measurements of LMA are an aggregate of a number
of constituents including chlorophyll, carotenoids, lipids, organic acids,
phenolics, and vascular tissue (Poorter et al., 2009), which would posi-
tively bias the measurement compared to the spectral estimate. Finally,
it is possible that strong positive covariance between N and Cm (Fig. 6)
caused by their significant spectral overlap (Fig. S1) interferes with ac-
curate estimation of Cm. However, based on our finding that inversions
of simulated spectra did not display this problem (Field spectra in Fig. 5;
Fig. S6), we conclude the error is in fact driven more by model formula-
tion than by parameter identifiability. We are aware of only one other
study that attempted to estimate all five PROSPECT parameters (includ-
ing the structure parameter, N) simultaneously: Li and Wang (2011)
presented a novel algorithm for PROSPECT inversion that assigns a sep-
arate merit function to each parameter (rather than a single common
merit function for all parameters) and demonstrated its improved per-
formance over traditional approaches. However, although their new al-
gorithm reduced error and bias in the LMA estimates, a negative bias
comparable to the one we report still remained across all of their data
sets.

Based on these results, we suggest that future PROSPECT develop-
ment should aim for finer distinction in leaf chemical components.
That being said, the introduction of additional parameters into a
model must be approached with caution, as parameter precision and
identifiability tend to decrease with model complexity. The ability of
our Bayesian inversion to quantify parameter uncertainty and covari-
ancemakes it useful for nestedmodel selection. An alternative approach
to addressing the issue of empirically-calibrated absorption coefficients
is to explicitly account for their uncertainty and covariance structures.
Within our Bayesian framework, such uncertainties could be treated
as observation errors and propagated to the uncertainty in parameter
estimates. In subsequent work, we will explore such a calibration
using coupled spectral-trait data from multiple available datasets.

The relatively large magnitude in our observed transmittance bias
(compared to reflectance) is likely the result of using only reflectance
as input in our inversion. A combined approach using measured reflec-
tance and transmittance observations, collected on the same leaf sam-
ples, may have shown the variability distributed more evenly because
the minimization of the residuals would have been more balanced be-
tween the two vectors of data. Ultimately, higher uncertainties in trans-
mittance estimates compared to reflectance are a consequence of the
inherent challenges in using integrating spheres to measure transmit-
tance, especially the substantial noise in the SWIR regions. This is sup-
ported by the absence of significant systematic bias between
measured andmodeled transmittance across the overwhelmingmajor-
ity of the spectrum (Fig. 2). Moreover, although the confidence intervals
on transmittance bias are as high as 25% at some wavelengths, averag-
ing over all spectra and aggregating across the visible (400 to 800 nm)
and infrared (801 to 2500 nm) regions leads to results similar to those
reported in other field spectra inversion studies, even though these
studies used both reflectance and transmittance as input (Table S1). Al-
though our overall transmittance RMSE values were two to three times
higher than those reported by Feret et al. (2008), these errors are inflat-
ed by the inclusion of conifer species, for which reflectance is harder to
measure reliably and the assumptions of the PROSPECT model are not
satisfied (Jacquemoud & Baret, 1990; Di Vittorio, 2009a; Allen,
Gausman, Richardson, & Thomas, 1969). As well, measurements of nee-
dle-leaf transmittance often result in considerable noise in longerwave-
lengths (SWIR, N2000 nm) given the physical challenges of making
these measurements on needle-leaf species (and other leaf types), gen-
erally poor lamp performance as compared to other methods, and the
much smaller transmission of light in these wavelengths (often
resulting in signals below the precision of the instrument). As such we
would expect higher reported error compared to other leaf morphol-
ogies. For example, in examining our broadleaf samples we observed
that the statistics for transmittance are much closer to those reported
by Feret et al. (2008), despite not including measured transmittance
in the inversion (Table S1). Our transmittance error statistics are also
similar to those reported for conifers by Di Vittorio (2009a) who used
transmittance information and a re-calibrated version of the LIBERTY
leaf RTM (Table 3). Moreover, our reflectance statistics show error com-
parable to or lower than those reported in similar studies (Feret et al.,
2008; Di Vittorio, 2009a).

Through our sensor experiment, we explicitly demonstrate the
tradeoffs between spectral information content and parameter uncer-
tainty and identifiability. With increasingly coarse spectral resolution,
we observed not only wider parameter confidence intervals indicating
higher uncertainty but also tighter covariance structures indicating a re-
duced ability to distinguish between parameters (Fig. 6). This compari-
son approach can be used to guide future enhancements of radiative
transfer models by quantitatively showing whether a model of a given
complexity is warranted given data of a particular quality. For example,
in our simulation experiment, all the full-range hyperspectral sensors
were capable of accurately estimating chlorophyll and carotenoids,
but the ability of multispectral sensors to do so was dramatically
lower (Figs. 5, S6, and S7; Table 5). We therefore can conclude that
the use of PROSPECT 5 is warranted when performing inversion of
hyperspectral data, but PROSPECT 4 (which does not distinguish be-
tween pigments) may be preferable for multispectral data. A similar
framework can be used to determine the utility of increasingly complex
future versions of PROSPECT that further differentiate leaf biochemical
and structural components.

Importantly, the results of our sensor simulation experiment are
highly idealized due to their failure to consider canopy structure, atmo-
spheric effects, sun-sensor geometry, and sensor radiometric and spatial
characteristics. However, a similar Bayesian inversion framework has
been shown towork onMODIS data for the related coupled leaf-canopy
RTM PROSAIL (Zhang et al., 2005, 2006; Zhang et al., 2009, & Zhang et
al., 2012a; Zhang, Qu, Wang, Liang, & Liu, 2012b) and we believe the
framework can be readily applied to other RTMs that address many of
the limitations of our study. In future work, we will explore Bayesian
spectral inversion of the coupled leaf-canopy RTM responsible for ener-
gy balance calculations in the ED2 ecosystem model (Medvigy et al.,
2009) on atmospherically corrected and orthorectified AVIRIS imagery,
which will be an important milestone in bringing together the remote
sensing and ecological modeling communities. In the long run, our
framework could also be extended to the inversion of coupled cano-
py-atmosphere models using a combination of meteorological and
spectral data from Earth Observation satellites, leveraging the relative
advantages of each platform to generate unified time series of ecologi-
cally meaningful parameters with unprecedented spatial and temporal
resolution.

5. Conclusions

This study introduces a novel application of Bayesian spectral inver-
sion to the PROSPECT 5 leaf RTM that explicitly takes into account un-
certainty and correlation in parameter estimates. Validation of our
algorithm on a coupled leaf spectral-trait database revealed accuracy
comparable to previous inversion algorithms despite only using reflec-
tance observations and the default PROSPECT model (i.e. no additional
refinement of the specific absorption features). By simulating reflec-
tance measurements with the spectral characteristics of different re-
mote sensing platforms, we were able to quantify the relationship
between spectral resolution and parameter uncertainty. Although our
simulated observations are highly idealized, we believe the resulting
patterns in retrieved parameter accuracy and precision are representa-
tive of the advantages and limitations of the spectral configurations of
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different sensors for remote sensing of vegetation. Our work reinforces
the notion that Bayesian spectral inversion provides a powerful and ver-
satile framework for future RTMdevelopment and single- andmulti-in-
strumental remote sensing of vegetation, and we encourage members
of the remote sensing community to apply and build upon the tools
we have developed (which can be viewed and downloaded at https://
github.com/PecanProject/pecan/tree/master/modules/rtm).
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